Design Engineering

UBC engineers create brawny concrete using recycled tires

Mike McLeod   

Materials

Shredded tire fibres significantly boost common building material's crack resistance.

Ricky Ratu, lab assistant, UBC civil engineering
(Photo credit: Clare Kiernan / UBC)

Engineers at the University of British Columbia announced they’ve developed a process that uses shredded old automotive tires to reinforce and strengthen concrete, thereby potentially reducing the number of tires in landfills while also extending the life of concrete structures (e.g. buildings, roads, dams, bridges, etc).

“Our lab tests showed that fibre-reinforced concrete reduces crack formation by more than 90 per cent compared to regular concrete,” said Obinna Onuaguluchi, a postdoctoral fellow in civil engineering at UBC. “Concrete structures tend to develop cracks over time, but the polymer fibres are bridging the cracks as they form, helping protect the structure and making it last longer.”

According to Onuaguluchi, his researcher team experimented with different proportions of recycled tire fibres and other materials used in concrete—cement, sand and water—before finding the ideal mix, which includes 0.35 per cent tire fibres

UBC civil engineering professor Nemy Banthia, who supervised the work, says the environmental and industrial impact of the research is crucial. Up to three billion tires are produced around the world every year, generating close to three billion kilograms of fibre when recycled.

Advertisement

“Most scrap tires are destined for landfill. Adding the fibre to concrete could shrink the tire industry’s carbon footprint and also reduce the construction industry’s emissions, since cement is a major source of greenhouse gases,” said Banthia, who also is scientific director of UBC-hosted Canada-India Research Center of Excellence (IC-IMPACTS), a centre that develops research collaborations between Canada and India.

“We use almost six billion cubic metres of concrete every year,” added Banthia. “This fibre can be in every cubic metre of that concrete.”

Recycled-rubber roads are not new; asphalt roads that incorporate rubber “crumbs” from shredded tires exist in the U.S., Germany, Spain, Brazil and China. But using the polymer fibres from tires has the unique benefit of potentially improving the resilience of concrete and extending its lifespan.

The new concrete was used to resurface the steps in front of the McMillan building on UBC’s campus in May. Banthia’s team is tracking its performance using sensors embedded in the concrete, looking at development of strain, cracking and other factors. So far, the results support laboratory testing that showed it can significantly reduce cracking.

The research, described in Materials and Structures, has received support from IC-IMPACTS; Tire Stewardship B.C., the nonprofit that manages British Columbia’s tire recycling program; Atlantis Holdings Inc.; and recycler Western Rubber Products Ltd, which processed the fibres.
www.ubc.ca

Advertisement

Stories continue below

Print this page

Related Stories